Pain Management in Newborns

Richard W. Hall, MD, Kanwaljeet J. S. Anand, MBBS, D.Phil., FRCPCH

INTRODUCTION

Historical Perspective

Routine assessment and management of neonatal pain has evolved to become an important therapeutic goal in the twenty-first century. During the twentieth century, however, most procedures and clinical practices established in neonatal intensive care units (NICUs) uniformly denied or disregarded the occurrence of neonatal pain. One unfortunate consequence was that infant surgery was conducted routinely with minimal or no anesthesia until the late 1980s. Robust responses to painful stimuli were often dismissed as physiologic or behavioral reflexes and not related to the conscious experience of pain. A recent historical analysis suggests that related

Disclosure: None.
The authors would like to acknowledge the NIGMS IDeA Program award P30 GM110702 (R.W. Hall), the European Economic Commission – FP7 Programme, and the Oxnard Foundation (K.J.S. Anand) for research funding during the preparation of this article.

Department of Pediatrics/Neonatology, University of Arkansas Hospital, 4305 West Markham Street, Little Rock, AR 72205, USA; Department of Pediatrics/Critical Care Medicine, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, 50 North Dunlap Street, Room 352R, Memphis, TN 38103, USA

* Corresponding author.

E-mail address: kanand@uthsc.edu

KEYWORDS

- Analgesia
- Sedation
- Pain
- Stress
- NICU
- Infant-newborn

KEY POINTS

- Neonatal pain should be assessed routinely every 4-6 hours or if clinically indicated using context-specific, validated, and objective pain assessment methods.
- Nonpharmacologic and environmental measures are effective for nonspecific distress or acute procedural pain, or can be used as adjunctive therapies for severe ongoing pain.
- Moderate or severe pain requires local/topical anesthetic agents, acetaminophen, NSAIDs, morphine, fentanyl, ketamine, or dexmedetomidine, singly or in combination to avoid side effects or tolerance/withdrawal.
- Evidence-based guidelines for pain management in the Neonatal Intensive Care Unit can be implemented and modified collaboratively using a Quality Improvement approach that is outlined.
causes contributed to a widely prevalent denial of infant pain: (1) a Darwinian view that held newborns as less evolved human beings; (2) extreme caution and skepticism in interpreting scientific data that suggested infant pain; (3) a reductionistic approach whereby mechanistic behaviorism became the dominant model human psychology in the earlier half of the twentieth century (following J. B. Watson’s Behaviorist Manifesto in 1913); and as the behaviorist movement waned, it was followed by (4) an era placing undue emphasis on the structural development of the brain and its responses.

This popular precept was challenged by accumulating data on hormonal-metabolic responses to surgical procedures performed under minimal anesthesia, which were effectively reduced by giving potent anesthesia, the identification of a pain system and initial data on its early development, as well as detailed observations on crying activity and other behaviors of newborns subjected to painful stimuli in the NICU—all of which contributed to a scientific rationale for neonatal pain perception and its clinical implications. Once the existence of neonatal pain was acknowledged and methods for clinical assessment had been validated, the stage was set for advances in neonatal pain management.

Importance of Neonatal Pain

The American Academy of Pediatrics (AAP) and the Canadian Pediatric Society (CPS) updated their guidelines in 2006, recommending that each health care facility treating newborns should establish a neonatal pain control program that includes:

- Performing routine assessments to detect neonatal pain
- Reducing the number of painful procedures
- Preventing or treating acute pain from bedside invasive procedures
- Anticipating and treating postoperative pain after surgical procedures
- Avoiding prolonged or repetitive pain/stress during NICU care

Numerous clinical studies have demonstrated that failure to treat pain leads to short-term complications and long-term physiologic, behavioral, and cognitive sequelae, including altered pain processing, attention-deficit disorder, impaired visual-perceptual ability or visual-motor integration, and impaired executive functions. Conversely, other studies showed needless analgesic therapy prolongs the need for mechanical ventilation, delays feeding, or leads to other sequelae, including impaired brain growth, poor socialization skills, and impaired performance in short-term memory tasks. About 460,000 neonates in the United States require care in NICUs each year and are exposed to acute pain from invasive procedures or prolonged pain from surgery or inflammation. Assessing neonatal pain is difficult to teach, time and labor intensive, often open to subjective interpretation, and a source of conflict in NICU care.

PAIN ASSESSMENT

Current practice requires the nursing staff to make a global pain assessment of neonates or apply validated pain scoring methods before taking appropriate actions to ameliorate newborn pain or discomfort. The current nursing workload in the NICU does not allow bedside nurses to assess neonatal pain accurately. Many pain scales lump together behavioral, physiologic, and other variables; but these variables may not respond to neonatal pain in similar or specific ways. The interrater reliability and subjectivity of human assessments are further limiting factors in their prevalent use.
The use of qualitative or subjective methods, rather than quantifiable data for neonatal pain assessment, results in inconsistencies and variability in analgesic therapy. Because of a large pharmacokinetic variability of analgesic drugs in neonates, their pain management is often of poor quality and inconsistent from shift to shift. Adopting an objective pain assessment method greatly enhances the quality of pain management in NICUs and elsewhere by avoiding untreated pain or excessive analgesia. Pain assessment methods should be designed to reduce the nursing workload; the side effects of underdosing or overdosing analgesics; the clinical practice variability within and across different NICUs; and complications like tolerance, withdrawal, or delayed recovery from analgesia/sedation.

Pain Assessment Methods

Currently available methods for neonatal pain assessment may be unidimensional (one parameter) or multidimensional (physiologic, behavioral, or other parameters). Several multidimensional assessment tools with demonstrated validity, reliability, and clinical utility are used in the NICU. These tools are based on indicators readily assessed at the bedside, such as changes in heart rate, respiratory pattern, blood pressure, or oxygen saturation. Behavioral responses include crying, changes in facial expressions, and body movements. For example, total facial activity and a cluster of specific facial findings (brow bulge, eye squeeze, nasolabial furrow, open mouth) were associated with acute and postoperative pain.

The tools most commonly used in the NICU for acute pain assessment include the Premature Infant Pain Profile (PIPP), Neonatal Pain Agitation and Sedation Scale (N-PASS), Neonatal Infant Pain Scale (NIPS), and the CRIES scale (Crying, Requires Oxygen Saturation, Increased Vital Signs, Expression, Sleeplessness). Premature infants, the most likely group to undergo painful procedures, are less likely to consistently demonstrate the responses to pain selected by these assessment tools. These scales have been evaluated for acute pain and some for postoperative pain, but none of these methods assess persistent or chronic pain in neonates. Two multicenter studies reported a wide range of pain assessment methods used in NICUs: 12 sites evaluated by the 2002 Neonatal Intensive Care Quality Improvement Collaborative used 5 different assessment tools, whereas 10 sites in the Child Health Accountability Initiative used 8 different assessment tools.

Limitations of these pain assessment methods include:

- Most methods were developed from and validated for neonates undergoing acute pain (e.g., venipuncture, heelstick).
- Many of the signs used in these assessment tools require subjective evaluations by observers. As a result, there is significant interobserver variability in the evaluation of behavioral responses.
- Some parameters like heart rate variability or palmar skin conductance require specialized equipment that is not routinely available at the bedside.
- Other measures like salivary cortisol or other biomarkers are not available in real time to be clinically useful.
- Behavioral pain responses may be altered in neurologically impaired neonates and absent in those who receive neuromuscular blockade.

Methods for the assessment of persistent or prolonged pain in neonates (for major surgery, osteomyelitis, necrotizing enterocolitis) have not been developed or validated. During episodes of persistent pain, newborns exhibit a passive state, with limited or no body movements, expressionless facies, reduced physiologic variability, and decreased oxygen consumption. Also, behavioral responses depend on
the subjective judgments of rotating care providers, leading to significant interobserver variability. Clinicians must also recognize potentially important relationships between the infant’s pain response and the sensitivity and receptivity of the infant’s care providers.

Current efforts to improve the accuracy of pain assessment tools include the use of neuroimaging and neurophysiologic techniques that measure brain activity in order to validate neonatal pain scales. Their goal is to provide clinicians at the bedside reliable and accurate methods to detect pain and quantify its intensity.

MANAGEMENT OF PAIN

Nonpharmacologic Approaches

Nonpharmacologic approaches to pain relief are underappreciated, underutilized, and understudied. These methods of pain relief have demonstrated effectiveness in NICU care in certain situations, and modern NICUs should use these methods when appropriate. Although opinions differ on the use of complementary and alternative medicine, up to half of the population of the developed countries use this form of therapy; 13.7% of the US population seeks advice from alternative therapists and doctors annually. Opinions range from “Research on alternative medicine is frequently of low quality and methodologically flawed, which might cause these results to be exaggerated” (Report on Complementary & Alternative Medicine in the United States, Institute of Medicine, 2005) and “clothe naked quackery and legitimise pseudoscience” to being “less dangerous and as effective as pharmacologic therapy.”

Reduction of painful events

Perhaps the most effective method to eliminate neonatal pain is to reduce the number of procedures performed and episodes of patient handling. NICUs and newborn nurseries should develop policies that limit handling and invasive procedures, without compromising the care of the infants. With forethought and planning, clustered care can reduce the number of bedside disruptions; but it may increase pain responses.

1. Decrease bedside disruptions by timing routine medical interventions (daily physical examinations) with other care procedures (diaper change or suctioning).
2. Anticipate laboratory testing to minimize the frequency of blood sampling.
3. Use handheld devices that can perform several analyses (pH, PaO2, PaCO2, electrolytes, calcium, bilirubin, lactate) from a single small blood sample, thereby reducing the number of heelsticks required for laboratory testing.
4. Place peripheral arterial or central venous catheters in patients who need more than 3 to 4 heelsticks per day. These procedures should be performed with adequate analgesia.
5. If clinically appropriate, use noninvasive monitoring, such as transcutaneous PaO2, PaCO2, oxygen saturations, glucose or bilirubin levels, or near infrared spectroscopy, to avoid the need for blood sampling.
6. Consider the use of noninvasive therapeutic approaches for providing analgesia in newborns (eg, transdermal patches, iontophoresis, compressed air injectors).

Kangaroo care and facilitated tucking

Kangaroo care (KC) is defined as skin-to-skin contact, most commonly instituted shortly after birth. KC has been used in developing countries for warmth and bonding, while decreasing morbidity and mortality, especially in preterm neonates. In developed countries, many health care workers are unaware of the benefits of KC. During heelsticks, KC decreases crying time, improves pain scores, and decreases
stress in preterm neonates, similar to facilitated tucking. The mechanism of action of KC is unclear. Possibilities include the ability of the newborn to hear the maternal heartbeat, less maternal stress, and enhanced self-regulation. KC is safe in preterm neonates who are stable and weigh more than 1000 g. However, 2 hours of KC daily was not effective in reducing stress levels in preterm neonates as measured by salivary cortisol. During holding, KC decreases adverse cardiopulmonary events.

Facilitated tucking is defined as placing a hand on the baby’s hands or feet and positioning the baby to provide support yet allow them to control their own body movements and is similar to providing KC. It has been used to alleviate pain during endotracheal suctioning and heelsticks. However, it may not be as effective as oral sucrose for repeated painful procedures.

Non-nutritive sucking, sucrose and other sweeteners

Pain relief has been provided by non-nutritive sucking, with and without sucrose, glucose, and breast feeding. Non-nutritive sucking and sweeteners seem to work by increasing endogenous endorphins, as naloxone seems to blunt the response; however, the mechanism is not completely understood. Sweeteners seem to augment the antinociceptive response to pain compared with non-nutritive sucking. Both sucrose and glucose enhance its effectiveness; they both decrease crying time and improve pain scores after acute mild pain, such as from heelsticks. A recent meta-analysis revealed that glucose is an acceptable alternative to sucrose, decreasing PIPP scores and crying times associated with venipuncture and heelstick. Sucrose is efficacious in reducing the pain from single events, such as retinopathy of prematurity screening, oral gastric tube insertion, and heelsticks. However, sucrose is controversial when given repeatedly, possibly leading to adverse long-term outcomes. Optimal dosing of sucrose is not known, and a recent Cochrane Review raised concerns about repeated dosing or use in extremely preterm or ill neonates. Breast feeding, especially when accompanied by skin-to-skin contact, is more efficacious than either alone in reducing pain associated with heelstick; however, there is a limited number of studies in the preterm population.

Massage therapy

Massage therapy involves hands-on and skin-to-skin manipulation of the soft tissue that includes gentle effleurage (rhythmic, gliding strokes confirming to the contours of the body), light petrissage (lifting, rolling, kneading strokes done slowly), and compression (light compression of selected areas) and nerve stroke (very light brushing of the skin). It is thought to work by enhancing vagal activity, modulating insulin and insulin-like growth factor 1, as well as decreasing levels of cortisol and epinephrine. Massage therapy has demonstrated effectiveness in randomized trials. Massage decreased NIPS scores in 13 infants receiving heelsticks preceded by a 2 minute-massage in the ipsilateral leg, increased weight gain via vagal stimulation, and improved neurodevelopmental outcomes in very low birth weight neonates. It does not induce sleep in stable preterm neonates, limiting its usefulness as a sedative (Yates CC, personal communication, 2014).

Acupuncture

Acupuncture is the stimulation of acupuncture points by mechanical or electrical means to elicit pain relief. It works by stimulation of the endorphin or non-opioidergic analgesic systems. Despite its use in China for thousands of years and its frequent use by patients in developed countries, it has not gained widespread acceptance in conventional Western medicine.
In conclusion, nonpharmacologic therapies are safe and effective for minor pain and as an adjunct for moderate or severe pain. KC is effective for pain relief during the holding period; it is safe in clinically stable term and preterm neonates weighing more than 1000 g and has beneficial effects on growth, mother-infant bonding, and long-term neurodevelopmental outcomes. Facilitated tucking can provide some pain relief for endotracheal suctioning but is not as effective as sucrose for skin-breaking procedures. Sucrose, glucose, breast milk, and other sweeteners with or without non-nutritive sucking have specific analgesic effects for most skin-breaking procedures, although the safety of repeated use has not been established. Massage therapy decreases pain scores and promotes weight gain in preterm neonates, whereas acupuncture has been inadequately studied in neonates. The use of nonpharmacologic therapies is often recommended as the first step in neonatal pain management, particularly because of their favorable side-effect profile, their ability to diminish acute pain from invasive or noninvasive procedures, and their beneficial long-term effects as compared with the systemic analgesics.

Local Anesthetics

Lidocaine infiltration

Lidocaine inhibits axonal transmission by blocking sodium ion channels. Lidocaine infiltration is commonly used for various penile blocks for circumcision. In this circumstance, its use has demonstrated effectiveness in decreasing the pain response to immunizations as long as 4 months after circumcision compared with neonates who received placebo.\(^87\) Compared with a dorsal penile root block or eutectic mixture of local anesthetics (lidocaine and prilocaine combination [Eutectic Mixture of Local Anesthetic (EMLA)]) cream, the ring block has been shown to be the most effective means of pain relief for circumcision.\(^88\)

Topical anesthetics

Topical anesthetics are effective for certain types of procedural pain, such as venous cannulation,\(^89\) lumbar puncture,\(^90\) or venipuncture.\(^91\) One study reported combining sucrose with topical analgesia, which resulted in lower Douleur Aigue Nouveau-ne (DAN) scores.\(^92\) Another study demonstrated increased success with venipuncture in young infants and children if the cream was left in place for 2 hours or more.\(^93\) EMLA cream was studied in preterm neonates subjected to venipuncture. N-PASS scores were significantly lower in the treated group compared with placebo, leading the investigators to recommend this method of analgesia.\(^94\) Tetracaine is also used topically, with varying success. When combined with sucrose, one study found no benefit of this formulation,\(^95\) whereas another review found similar efficacy but with a more rapid onset of action as compared with EMLA cream, making it attractive for clinical use.\(^96\)

Complications of the topical creams include methemoglobinemia and transient skin rashes.\(^97\) Concerns for methemoglobinemia are exaggerated in preterm neonates because of a thinner epidermis, high dermal permeability, and limited circulating antioxidants. However, when used properly (as recommended by the Food and Drug Administration), very few neonates develop toxic methemoglobinemia even after repeated EMLA use.\(^98\)–\(^101\) Newer topical anesthetics include 4% tetracaine and 4% liposomal lidocaine, with a shorter onset of action; but they are not more effective.

Unfortunately, topical anesthetics have not been effective in providing pain relief for heelsticks, one of the most common skin-breaking procedures,\(^102\) although they may reduce hyperalgesia following the tissue injury associated with heelsticks.\(^103\)
Opioid Therapy

Opioids provide the most effective therapy for moderate to severe pain in patients of all ages. They produce both analgesia and sedation, have a wide therapeutic window, and also attenuate the physiologic stress responses of neonates. Morphine and fentanyl are the most commonly used opioids, although some NICUs report the use of more potent (eg, sufentanil), shorter-acting (eg, alfentanil, remifentanil), or mixed opioids (eg, tramadol).

Morphine

Morphine is the most commonly used opioid for neonatal analgesia, often used as a continuous infusion in ventilated or postoperative infants or intermittently to reduce the acute pain associated with invasive procedures. Its effectiveness and safety for these indications has not been established but remains under active investigation.

Morphine improves ventilator synchrony in ventilated neonates, although recent multicenter trials have questioned the benefit of routine morphine infusions in ventilated preterm infants. The Neurologic Outcomes and Pre-emptive Analgesia in Neonates (NEOPAIN) multicenter trial evaluated 898 ventilated preterm infants (23–32 weeks' gestation) randomly assigned to morphine or placebo infusions. Open-label morphine was given for additional analgesia based on the clinical judgment of clinicians in each of the NICUs. There were no differences in the rates of mortality, severe intraventricular hemorrhage (IVH), or periventricular leukomalacia (PVL) between the two groups, even though neonates in the morphine group seemed to have lower PIPP scores and smaller increases in heart rate and respiratory rate. These differences were small but reached statistical significance because of the large sample size. Infants treated with morphine were more likely to develop hypotension, required a longer duration of mechanical ventilation, and took longer to tolerate enteral feeds.

Another trial that randomized 150 ventilated term and preterm neonates in 2 Dutch centers found no differences in the analgesic effects of morphine versus placebo using multiple measures of pain assessment. A lower incidence of IVH occurred in the morphine group, but no differences in poor neurologic outcome occurred between the two groups. A systematic review selected 13 randomized controlled trials (RCTs) on the use of opioids in ventilated infants. Pooled data from 4 studies using PIPP scores showed reduced pain in the patients who received morphine versus placebo (weighted mean difference −1.71, 95% confidence interval −3.18 to −0.24). Additional analyses demonstrated no differences in mortality rates (5 RCTs), duration of mechanical ventilation (10 RCTs), or neurodevelopmental outcomes evaluated at 5 to 6 years of age (2 RCTs) and no differences in secondary outcomes (rates of necrotizing enterocolitis (NEC), bronchopulmonary dysplasia (BPD), IVH, PVL, and hypotension), except that preterm infants in the morphine groups took longer to tolerate full enteral feeds.

Morphine analgesia is associated with significant side effects in preterm infants, but it may or may not alter their long-term cognitive or behavioral outcomes. A retrospective study of 52 term neonates with hypoxic-ischemic insults following birth asphyxia showed less brain injury on MRI and improved neurodevelopmental outcomes in infants who received morphine in the first week after birth compared with those who did not receive opioid therapy. The routine use of morphine infusions is not recommended for ventilated preterm neonates but may be beneficial for term neonates following birth asphyxia.

Morphine analgesia may not be associated with the same risk profile in ventilated term infants but may still increase the duration of ventilation. A retrospective study
of 62 ventilated term newborns found that postoperative morphine infusions prolonged the need for mechanical ventilation but was not associated with apnea, hypotension, or other complications. A series of RCTs comparing intermittent versus continuous morphine infusions found that morphine is safe and effective for postoperative pain in term neonates and older infants. Currently, however, there are no RCTs that have investigated the safety and efficacy of postoperative morphine analgesia in preterm neonates.

The analgesic effects of morphine in reducing acute procedural pain are controversial. During CVL placement, one RCT found that ventilated neonates receiving morphine alone and morphine plus tetracaine had lower pain scores than the no treatment or tetracaine alone groups. However, patients who received morphine required greater ventilatory support in the 12 hours following the procedure. In contrast, the NEOPAIN and Dutch morphine trials evaluated the responses to heelstick or tracheal suctioning, respectively, in preterm infants randomized to continuous morphine or placebo infusions and found no difference in pain scores between the two groups. Morphine pharmacodynamics studies in ventilated preterm neonates also found no relationship between plasma morphine levels and responses to tracheal suctioning. Of note, the preparation of morphine infusions in the NICU from regular morphine vials involves the manual dilution of small volumes, leading to significant inaccuracies in the concentrations delivered to neonates.

Fentanyl

As a highly lipophilic drug, fentanyl provides rapid analgesia with minimal hemodynamic effects in term and preterm newborns, although its popular use is not supported with evidence from large multicenter RCTs. Smaller trials reported that fentanyl reduces stress hormone levels, episodes of hypoxia, and behavioral stress scores in ventilated infants as compared with placebo controls. Although infants who received fentanyl required greater ventilatory support, no differences occurred in clinical outcomes between the fentanyl- and placebo-treated groups. Another RCT reported that behavioral pain scores and cytokine release following heel sticks were reduced to a greater extent with fentanyl (1–2 mcg/kg) as compared with facilitated tucking. Fentanyl or its shorter-acting derivatives (eg, alfentanil, remifentanil) are often used for analgesia before procedures in preterm and term newborns. A randomized trial in 20 preterm newborns found that overall intubating conditions were significantly improved in those receiving remifentanil versus morphine. However, no complications occurred following either intravenous (IV) morphine or remifentanil.

Although the AAP/CPS guidelines do not recommend the routine use of continuous fentanyl infusions in ventilated preterm neonates, this occurs frequently in many NICUs. In a multicenter RCT in 131 mechanically ventilated preterm infants (23–32 weeks’ gestation), fentanyl infusions reduced acute pain (PIPP) scores; no differences occurred in the prolonged pain Échelle Douleur Inconfort Nouveau-Né (EDIN) scores between the two groups, although fewer neonates showed EDIN scores greater than 6 in the fentanyl (6.8%) versus placebo groups (10.6%). Those receiving fentanyl infusions had a longer duration of mechanical ventilation and delayed passage of meconium. Fentanyl analgesia is associated with less sedative or hypotensive effects, reduced effects on gastrointestinal motility or urinary retention, but greater opioid tolerance and withdrawal as compared with morphine. A single-center RCT compared infusions of fentanyl (1.5 mcg/kg/h) versus morphine (20 mcg/kg/h) in 163 ventilated neonates and reported similar pain scores, catecholamine responses, and vital signs in both groups. There were no adverse respiratory effects or difficulties in weaning.
from ventilation in either group, but decreased beta-endorphin levels and gastroin-
testinal dysmotility occurred in the fentanyl group. In another double-blind RCT, single doses of fentanyl (3 mcg/kg) reduced physiologic and behavioral indicators of pain, improved postoperative comfort scores, and increased growth hormone levels in ventilated preterm neonates. Among postoperative preterm infants, fentanyl and tramadol provided equally effective analgesia, with no differences between the two groups for the duration of mechanical ventilation or the time to reach enteral feeds.

Fentanyl should be used when a rapidly acting opioid is required for analgesia in a controlled setting, where any associated side effects (bradycardia, hypotension, laryngospasm, and chest wall rigidity) can be addressed rapidly and adequately. Other indications include fentanyl analgesia for postoperative pain (following cardiac surgery) or for patients with pulmonary hypertension (primary or secondary). A single-center RCT using continuous fentanyl infusions following cardiac surgery found significant differences in postoperative complications and mortality compared with intermittent doses of morphine and diazepam, although it is unclear whether these clinical outcomes were related to anesthetic management or postoperative analgesia. Further studies of fentanyl analgesia for ventilated preterm neonates, and for term and preterm neonates exposed to postoperative pain, are required to evaluate its safety and efficacy in these patients.

Based on current evidence and clinical experience, the routine use of fentanyl infusions in ventilated preterm infants cannot be recommended at this time, except for neonates undergoing tracheal intubation, central line placement, or surgery. Morphine analgesia may be used in ventilated term neonates following surgery or birth asphyxia or in those requiring moderately invasive procedures, such as central venous catheterization, tracheal intubation, or chest tube placement. Exercise extreme caution if using opioid analgesia for preterm neonates at 22 to 26 weeks’ gestation or in those with preexisting hypotension because of the increased risk for adverse events, including hypotension, bradycardia, severe IVH, impaired gut motility, and worse neurodevelopmental outcomes.

Remifentanil, alfentanil, sufentanil
Remifentanil has a chemical structure similar to that of fentanyl but has twice its analgesic potency with an ultrashort duration of action (3–15 minutes). It is metabolized by plasma esterases in erythrocytes and tissue fluids, thus its excretion is independent of liver and renal function. Remifentanil is used for pain relief during brief procedures, such as central line placement or tracheal intubation. Alfentanil is more potent than morphine but has approximately one-third the potency of fentanyl and has a short duration of action (20–30 minutes). These drugs have been used successfully for tracheal intubation and other brief invasive procedures in neonates, but detailed safety and efficacy data are lacking.

For a summary of the opiates see Table 1.

Nonopioid Therapies
Benzodiazepines
Benzodiazepines activate gamma aminobutyric acid A (GABA_A) receptors and are commonly used in NICUs, but they have no analgesic effects. These drugs provide sedation and muscle relaxation, making them useful for noninvasive procedures, such as imaging studies and as an adjunct for motion control in invasive procedures. Their adverse effects include myoclonic jerking, excessive sedation, respiratory depression, and occasional hypotension.
Midazolam is the most commonly used benzodiazepine in the NICU, although concerns regarding its usage have been raised. Although there are relatively few studies to support the use of midazolam in neonates, it is common practice to use this drug for mechanical ventilation or procedural pain. One recent review found no apparent clinical benefit of midazolam compared with opiates in mechanically ventilated neonates. There are some concerns regarding the use of midazolam in neonates. One study reported an increased incidence of adverse short-term effects (intraventricular hemorrhage, periventricular leukomalacia, or death) and a longer hospital stay associated with midazolam compared with morphine. Midazolam has also been associated with benzyl alcohol exposure. A recent Cochrane Review found insufficient data to promote the use of IV midazolam as a sedative in the NICU, in addition to “concerns about the safety of midazolam in neonates.” It is also used for noninvasive procedures, such as computed tomography (CT) scans and less invasive procedural sedation. One recent study found a significant effect of midazolam on pain scores after surgery. There have been no long-term studies describing a benefit or harm with midazolam. In summary, midazolam seems to provide sedative effects in mechanically ventilated neonates; but it should be used with caution because of reported adverse effects, particularly when used alone. The decreased number of GABA_A receptors in neonates compared with adults may contribute to the neonates’ risk of neuroexcitability and myoclonic activity that resembles and, in some cases, may progress to seizure activity.

A starting dose of 100 mcg/kg with a maintenance dosage of 50 to 100 mcg/kg/h can be used in neonates to provide sedation. Oral midazolam is also effective, with 50% bioavailability compared with the IV preparation. Finally, intranasal midazolam was effective for fundoscopic examinations in older children; but this mode of delivery has not been tested in neonates. Metabolism of these drugs occurs through glucuronidation in the liver; there is potential for decreased bilirubin metabolism, especially in asphyxiated or preterm newborns. Its half-life is only 30 to 60 minutes, which is prolonged in preterm and sick neonates. Recent pharmacokinetic data reveal a significant effect of maturation and body weight on the clearance of midazolam, which has elucidated the ability to predict levels in this age group.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>Potent pain relief</td>
<td>Respiratory depression</td>
</tr>
<tr>
<td></td>
<td>Better ventilator synchrony</td>
<td>Arterial hypotension</td>
</tr>
<tr>
<td></td>
<td>Sedation</td>
<td>Constipation, nausea</td>
</tr>
<tr>
<td></td>
<td>Hypnosis</td>
<td>Urinary retention</td>
</tr>
<tr>
<td></td>
<td>Muscle relaxation</td>
<td>Central nervous system depression</td>
</tr>
<tr>
<td></td>
<td>Inexpensive</td>
<td>Tolerance, dependence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long-term outcomes not studied</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prolonged ventilator use</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>Fast acting</td>
<td>Respiratory depression</td>
</tr>
<tr>
<td></td>
<td>Less hypotension</td>
<td>Short half-life</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quick tolerance and dependence</td>
</tr>
<tr>
<td>Remifentanil</td>
<td>Fast acting</td>
<td>Chest wall rigidity</td>
</tr>
<tr>
<td></td>
<td>Degraded in the plasma</td>
<td>Inadequately studied</td>
</tr>
<tr>
<td></td>
<td>Unaffected by liver metabolism</td>
<td></td>
</tr>
</tbody>
</table>
However, it adheres to the tubing in patients on extracorporeal membrane oxygenation (ECMO), increasing their dosing requirements by 50%. 173

Lorazepam Lorazepam has also been used in the NICU, albeit not as routinely as midazolam. It is a longer-acting drug than midazolam, with a duration of action 6 to 12 hours, so it does not have to be given as an infusion. It has been used successfully for seizure control in neonates who are refractory to phenobarbital and phenytoin despite its potential for neuronal toxicity. 174 Its use has also been associated with propylene glycol exposure. 162 For a summary of the benzodiazepines see Table 2.

Other sedatives

Phenobarbital Phenobarbital is usually considered as the drug of choice for seizure control. There is sparse evidence for the antinociceptive effects of phenobarbital in animals, 175 but it has no significant analgesic effects in humans. It was used in conjunction with opioids for sedation, 161 although there is little recent evidence that it is effective. Classically, it has been used for neonatal abstinence syndrome; but recent work by Ebner and others 176 has demonstrated that opiates shorten the time required for treatment. However, because of its anticonvulsant effects, phenobarbital is an attractive agent for patients with seizures.

Propofol Propofol has become popular as an anesthetic agent for young children, but it has not been studied extensively in neonates. 177 One study compared propofol with morphine, atropine, and suxamethonium for intubation and found that propofol led to shorter intubation times, higher oxygen saturations, and less trauma than the combination regimen in neonates; but these effects were not significantly different. 178,179 However, propofol should be used with caution in young infants because its clearance and potential for neurotoxicity are inversely related to neonatal and postmenstrual age. There is significant interindividual variability in the pharmacokinetics of propofol in preterm neonates; 180 its use can lead to severe hypotension, with transient decreases in heart rate and oxygen saturations. 181

Table 2
Benzodiazepines

<table>
<thead>
<tr>
<th>Drug</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzodiazepines</td>
<td>Better ventilator synchrony</td>
<td>No pain relief</td>
</tr>
<tr>
<td></td>
<td>Antianxiety</td>
<td>Arterial hypotension</td>
</tr>
<tr>
<td></td>
<td>Sedation</td>
<td>Respiratory depression</td>
</tr>
<tr>
<td></td>
<td>Hypnosis</td>
<td>Constipation, nausea</td>
</tr>
<tr>
<td></td>
<td>Muscle relaxation</td>
<td>Urinary retention</td>
</tr>
<tr>
<td></td>
<td>Amnesia</td>
<td>Myoclonus</td>
</tr>
<tr>
<td></td>
<td>Anticonvulsant</td>
<td>Seizures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Central nervous system depression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tolerance, dependence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alters bilirubin metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propylene glycol and benzyl alcohol exposure</td>
</tr>
<tr>
<td>Midazolam</td>
<td>Most studied benzodiazepine</td>
<td>Short acting</td>
</tr>
<tr>
<td></td>
<td>Quickly metabolized</td>
<td>Benzyl alcohol exposure</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>Longer acting</td>
<td>More myoclonus reported</td>
</tr>
<tr>
<td></td>
<td>Better anticonvulsant</td>
<td>Propylene glycol exposure</td>
</tr>
<tr>
<td>Diazepam</td>
<td>—</td>
<td>Not recommended in the neonate</td>
</tr>
</tbody>
</table>
Ketamine Ketamine is a dissociative anesthetic that provides analgesia, amnesia, and sedation. Although ketamine has been used extensively in older children, there have been limited studies in neonates. Ketamine increases blood pressure and heart rate, increases the respiratory drive, and leads to bronchodilation. Because ketamine does not affect cerebral blood flow significantly, it is a good choice for unstable, hypotensive neonates requiring procedures such as intubation or ECMO cannulation. In the authors’ laboratory, ketamine decreased neuronal cell death in the presence of repetitive pain in immature rodents, which would also make it attractive for preterm neonates, although no significant differences occurred in human studies. The dose for effective management of the pain caused by endotracheal suctioning in ventilated neonates was 2 mg/kg in one Finnish study. Despite these theoretic advantages, ketamine is a potent anesthetic with minimal study in neonates. Therefore, it should only be used for invasive procedures.

Dexmedetomidine Dexmedetomidine is a selective alpha-2 adrenergic receptor agonist that provides potent sedative and analgesic effects while causing minimal respiratory depression. Although dexmedetomidine is approved for sedation of patients undergoing surgical or other procedures, the clinical experience using this drug in neonates is limited. Ongoing research on its safety, dosing, and efficacy is being conducted in preterm and term infants, particularly following cardiac surgery. Therefore, the routine use of this drug in ventilated neonates is not recommended until sufficient data demonstrating its safety and efficacy and its pharmacokinetics and pharmacodynamics have been published. Clinicians using this drug should note that the plasma levels producing sedation (0.4–0.8 mcg/L) are lower than those producing analgesia (0.6–1.25 μg/L), at least in older children, and that it may cause seizures, bradycardia, and hypothermia in neonates. However, it seems to be useful for radiological procedures and supraventricular tachyarrhythmias in infants and children.

Chloral hydrate Chloral hydrate is not available in the United States but is commonly used in European NICUs when sedation is required without analgesia. It is commonly used for radiological procedures, electroencephalography, echocardiography, and dental procedures in older patients. It is converted to trichloroethanol, which is also metabolically active. A recent retrospective review found an increased incidence of apnea and desaturation in term neonates less than 1 month and in preterm neonates less than 60 weeks postconceptual age who were undergoing MRI. One study evaluated the combination of chloral hydrate and acetaminophen in ophthalmologic surgery for retinopathy of prematurity, comparing it with IV opioid analgesia. Although there was a general reduction in pain scores, some of the infants in this study had very high pain scores with the chloral hydrate preparation, making this combination questionable at best. In summary, this drug should be used for sedation without analgesia and with caution in preterm and young term neonates.

Acetaminophen (Paracetamol) Acetaminophen inhibits the cyclooxygenase-2 (COX-2) enzymes in the brain; it has been well studied in newborns. It is frequently used in conjunction with other types of pain relief to decrease opioid use, especially for postsurgical pain. IV acetaminophen decreased the amount of opioids needed after surgery and is particularly useful for routine postsurgical care with opioid-sparing effects. The main toxicity of this drug is liver damage; but when given in appropriate doses, it is safe and effective. One of the main concerns surrounding acetaminophen is drug overdosage, which...
Acetaminophen has also been used for procedural pain, such as immunizations or circumcision. In infants, oral, rectal, and IV formulations of acetaminophen have minimal adverse effects. In contrast to its use in older children or adults, acetaminophen rarely causes hepatic or renal toxicity in newborns. In addition, IV acetaminophen does not induce hypothermia in neonates. The prodrug is available as another IV formulation, marketed in European and other countries as propacetamol, although it causes more frequent side effects.

In both preterm and term infants, the clearance of acetaminophen is slower than older children, so oral/rectal dosing is required less frequently. Single oral doses of 10 to 15 mg/kg may be given every 6 to 8 hours, and 20 to 25 mg/kg can be given rectally at the same time intervals. These doses were primarily based on antipyretic dose-response studies and may not apply for pain control. Although limited data are available for IV acetaminophen in neonates, a pharmacokinetic analysis in 158 infants suggests a loading dose of 20 mg/kg and maintenance dosages of 10 mg/kg every 6 hours for infants at 32 to 44 weeks’ postmenstrual age. However, maintenance dosing for Extremely Low Gestational Age Neonates (ELGANs) is controversial and may be less than or equal to 7.5 mg/kg every 6 to 8 hours for neonates between 23 and 32 weeks’ postmenstrual age. The recommended total daily doses based on postmenstrual age are

- 24 to 30 weeks’ gestation: 20 to 30 mg/kg/d
- 31 to 36 weeks’ gestation: 35 to 50 mg/kg/d
- 37 to 42 weeks’ gestation: 50 to 60 mg/kg/d
- 1 to 3 months’ postnatal: 60 to 75 mg/kg/d

Wider use of acetaminophen as an analgesic will allow clearer definition of the adverse effects and safety profile of this useful drug in the neonatal population.

Nonsteroidal antiinflammatory drugs

Nonsteroidal antiinflammatory drugs (NSAIDs) are used extensively for pain relief in children and adults, but drugs like indomethacin and ibuprofen are mainly used for patent ductus arteriosus closure in neonates. They act by inhibiting the cyclooxygenase enzymes (COX-1 and COX-2) responsible for converting arachidonic acid into prostaglandins, thus producing their analgesic, antipyretic, and antiinflammatory effects. There are little data on the analgesic effects of NSAIDs in neonates. Concern over the side effects of renal dysfunction, platelet adhesiveness, and pulmonary hypertension have limited their study to this indication. However, ibuprofen has demonstrated beneficial effects on cerebral circulation in human studies as well as beneficial effects on the development of chronic lung disease in baboon experiments, making it potentially useful as an analgesic in preterm neonates.

IMPLEMENTING PAIN MANAGEMENT IN THE NEONATAL INTENSIVE CARE UNIT: A QUALITY IMPROVEMENT APPROACH

Pain in modern-day NICUs is inadequately treated, despite the overwhelming evidence depicting the adverse consequences of unrelieved pain/stress. Carbajal and colleagues found that preterm neonates experienced 10 to 14 painful procedures daily, most of which (80%) were not preceded by specific analgesia. Numerous other NICUs have noted similar findings. Even more concerning is the potential that chronic pain may be ignored, especially in mechanically ventilated neonates. Barriers include inadequate ability to assess prolonged neonatal pain, lack of knowledge of therapeutic effectiveness, and exaggerated concerns over analgesic side effects.
Further, the inherent difficulties in conducting human pain research in neonates require an ethical approach that will leave most studies seriously flawed.

Developing Neonatal Intensive Care Unit: Specific Guidelines

A suggested approach to evidence-based recommendations for the treatment of neonatal pain includes the following:

1. Recognition of neonatal pain as a valid concern
2. Recognition of acute procedural and chronic neonatal pain in need of treatment
3. Regular use of a validated assessment tool for neonatal pain
4. Educational resources for caregivers and parents in the NICU
5. Protocolized stepwise treatment plan for the procedures and conditions encountered in the NICU using nonpharmacologic and pharmacologic approaches to treatment
6. Continued auditing to ascertain appropriate treatment of neonatal pain
7. Well-planned program of coordination, facilitation, and using local champions and project teams

Stevens and colleagues identified 3 overarching themes that captured influences on optimal pain practices in the NICU:

1. A culture of collaboration and support among all health care providers and patients’ families
2. Threats to autonomous decision making, such as autocratic leadership and hierarchical relationships
3. Complexities in care delivery, related to the complexities of the patients as well as the system of care

The authors recommend a quality-improvement approach, involving all members of the health care team and families to discuss the causes, prevention, and evidence-based treatment of pain. Education must be provided with continual assessment, which should be documented consistently according to the Joint Commission’s requirements. By using this approach, the authors were able to decrease the number of painful procedures to less than 2 per day in neonates between 27 and 32 weeks’ postconceptual age.

Analgesia for Invasive Procedures

Analgesic approaches for specific procedures are listed in Table 3.

Postoperative Analgesia

Opiates remain the mainstay of postoperative pain relief. However, because of the concerns surrounding prolonged opiate therapy, many centers are using IV acetaminophen to augment opiate therapy. Its use has decreased the amount of opiates received by postoperative patients.

Analgesia for Mechanical Ventilation

Mechanical ventilation is one of the most common sources of chronic pain in modern NICUs. Newer, more effective surfactants, the use of prenatal steroids, and improved nutrition has brought about a new generation of survivors, many of whom require several months of assisted ventilation. Despite several well-conducted studies in ventilated preterm neonates, the ideal method of analgesia for assisted ventilation in preterm neonates is still unknown. Thus, analgesia for mechanical ventilation is controversial for a variety of reasons.
Table 3
Summary of procedures and recommendations for pain relief

<table>
<thead>
<tr>
<th>Skin-Breaking Proceduresa,b</th>
<th>Proposed Interventions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heel stick</td>
<td>Use nonpharmacologic measures + mechanical lance, squeezing the heel is the most painful phase</td>
<td>Venipuncture is more efficient, less painful; local anesthetics, acetaminophen, heel warming do not reduce heel stick pain</td>
</tr>
<tr>
<td>Venipuncture</td>
<td>Nonpharmacologic measures, use topical local anesthetics</td>
<td>Requires less time & less resampling than heel stick</td>
</tr>
<tr>
<td>Arterial puncture</td>
<td>Nonpharmacologic measures, use topical and subcutaneous local anesthetics</td>
<td>More painful than venipuncture</td>
</tr>
<tr>
<td>IV cannulation</td>
<td>Nonpharmacologic measures, use topical local anesthetics</td>
<td>—</td>
</tr>
<tr>
<td>Central line placement</td>
<td>Nonpharmacologic measures, use topical local anesthetics, consider low-dose opioids or deep sedation based on clinical factors</td>
<td>Some centers prefer using general anesthesia</td>
</tr>
<tr>
<td>Finger stick</td>
<td>Nonpharmacologic measures and use mechanical device</td>
<td>Venipuncture is more efficient, less painful; local anesthetics, acetaminophen, or warming may not reduce finger stick pain</td>
</tr>
<tr>
<td>Subcutaneous injection</td>
<td>Avoid if possible, use nonpharmacologic measures and topical local anesthetics if procedure cannot be avoided</td>
<td>—</td>
</tr>
<tr>
<td>Intramuscular injection</td>
<td>Avoid if possible, use nonpharmacologic measures and topical local anesthetics if procedure cannot be avoided</td>
<td>—</td>
</tr>
<tr>
<td>Lumbar puncture</td>
<td>Nonpharmacologic measures and topical local anesthetic, lidocaine infiltration, careful positioning</td>
<td>Use IV analgesia/sedation, if patients are intubated and ventilated</td>
</tr>
<tr>
<td>Peripheral arterial line</td>
<td>Nonpharmacologic measures and topical local anesthetic, lidocaine infiltration, consider IV opioids</td>
<td>—</td>
</tr>
<tr>
<td>Circumcision</td>
<td>Nonpharmacologic measures and topical local anesthetic, lidocaine infiltration, IV/PO acetaminophen before and after procedure</td>
<td>Lidocaine infiltration for distal, ring, or dorsal penile nerve blocks (DPNB); liposomal lidocaine is more effective than DPNB</td>
</tr>
<tr>
<td>Suprapubic bladder aspiration</td>
<td>Nonpharmacologic measures and topical local anesthetic, lidocaine infiltration, consider IV fentanyl (0.5–1.0 mcg/kg)</td>
<td>—</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Skin-Breaking Procedures<sup>a,b</sup></th>
<th>Proposed Interventions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial or venous cutdown</td>
<td>Nonpharmacologic measures and topical local anesthetic, lidocaine infiltration, IV fentanyl (1–2 mcg/kg), consider deep sedation</td>
<td>Most arterial or venous cutdowns can be avoided, consider referral to interventional radiology</td>
</tr>
<tr>
<td>Peripherally inserted central catheter (PICC)</td>
<td>Nonpharmacologic measures and topical local anesthetic, lidocaine infiltration, consider IV fentanyl (1 mcg/kg) or IV ketamine (1 mg/kg)</td>
<td>Some centers prefer using deep sedation or general anesthesia</td>
</tr>
<tr>
<td>ECMO Cannulation</td>
<td>Propofol 2–4 mg/kg, ketamine 1–2 mg/kg, fentanyl 1–3 mcg/kg, muscle relaxant as needed</td>
<td>—</td>
</tr>
<tr>
<td>Tracheal intubation (eg, for mechanical ventilation)</td>
<td>Give fentanyl (1 mcg/kg) or morphine (10–30 mcg/kg), with midazolam (50–100 mcg/kg), ketamine (1 mg/kg), use muscle relaxant only if experienced clinician, consider atropine</td>
<td>Superiority of one drug regimen over another has not been investigated</td>
</tr>
<tr>
<td>Gastric tube insertion</td>
<td>Nonpharmacologic measures, consider local anesthetic gel</td>
<td>Perform rapidly, use lubricant, avoid injury</td>
</tr>
<tr>
<td>Chest physiotherapy</td>
<td>Gentle positioning, fentanyl (1 mcg/kg) if a chest tube is present</td>
<td>Avoid areas of injured or inflamed skin, areas with indwelling drains or catheters</td>
</tr>
<tr>
<td>Removal of IV catheter</td>
<td>Solvent swab, consider nonpharmacologic measures</td>
<td>—</td>
</tr>
<tr>
<td>Wound treatment</td>
<td>Nonpharmacologic measures, use topical local anesthetics, consider low-dose opioids, or deep sedation based on extent of injury</td>
<td>See also “Dressing change”</td>
</tr>
<tr>
<td>Umbilical catheterization</td>
<td>Nonpharmacologic measures, IV acetaminophen (10 mg/kg), avoid sutures to the skin</td>
<td>Cord tissue is not innervated, but avoid injury to skin</td>
</tr>
<tr>
<td>Bladder compression</td>
<td>Consider nonpharmacologic measures or IV acetaminophen (10 mg/kg) if severe or prolonged</td>
<td>—</td>
</tr>
<tr>
<td>Tracheal extubation</td>
<td>Use solvent swab for tape, consider nonpharmacologic measures</td>
<td>—</td>
</tr>
<tr>
<td>Dressing change</td>
<td>Nonpharmacologic measures and topical local anesthetic, consider deep sedation if extensive</td>
<td>—</td>
</tr>
</tbody>
</table>

^a Nonpharmacologic measures include pacifier, oral sucrose, swaddling, skin-to-skin contact with mother.

^b The frequency of procedures can be reduced without sacrificing the quality of neonatal intensive care.
Mechanical ventilation leads to changes in neuroendocrine parameters, pain scores, and physiologic responses. Assisted ventilation in neonates is presumed to be associated with chronic repetitive pain, which in turn is associated with adverse long-term sequelae. Ventilated neonates treated with opiates have demonstrated improved ventilator synchrony, improved pulmonary function; and decreased neuroendocrine responses, including cortisol, beta-endorphin, and catecholamines. Reasons not to treat include the well-known adverse side effects of analgesics, especially the opiates, including hypotension from morphine; chest wall rigidity from fentanyl and alfentanil; and tolerance, dependence, and withdrawal from both opiates and benzodiazepines. Additionally, adverse effects, such as death and IVH, are not improved with preemptive treatment and may lead to adverse short-term effects.

Chronic pain assessment is poorly validated and difficult to assess in this patient population, since most studies have only evaluated acute pain scores. If patients are treated, opiates are the most common class of drugs, with morphine being the most well studied. Fentanyl may be advantageous in hypotensive and/or younger neonates because it has fewer cardiovascular effects. One recent study demonstrated improved acute pain scores with fentanyl, but time on the ventilator was prolonged compared with placebo. Remifentanil, especially when short-term intubation is needed, and dexmedetomidine are promising agents; but neonatal data are limited. The benzodiazepines, midazolam and lorazepam, have been used in ventilated neonates; but midazolam has been associated with adverse effects in one small study. Significant gaps in our knowledge exist, especially in regard to long-term effects of treatment, or lack thereof, and in chronic pain assessment associated with assisted ventilation. Recent data from the NEOPAIN trial suggest improved long-term outcomes at school age from the morphine-treated group, with fewer children requiring special education (Hall RW, personal communication, 2013).

In conclusion

- If neonatal patients exhibit irritability on assisted ventilation, first optimize oxygenation and ventilation.
- Treat acute pain and stress episodically as needed.
- Do not treat ventilated patients preemptively.
- There is no clear-cut advantage for any opioid in the management of ventilated preterm neonates.
- Key questions remain regarding chronic pain assessment, long-term outcomes, and safety.

SUMMARY

Pain management in neonates has made great strides over the last several years. Because of the serious short- and long-term adverse effects of pain and because of humanitarian reasons, all NICU patients deserve a focus on pain prevention, routine pain assessments, and evidence-based strategies for pain management, using both nonpharmacologic and pharmacologic approaches. Because pain strategies continue to fall short, future research should address systems-based practice and knowledge-transfer approaches on how to improve pain management in NICUs; how best to assess pain, especially prolonged or chronic pain; and how to incorporate the many variables affecting pain found in modern-day neonatology, such as light, sound, touch, parental separation, thermal stress, and extrauterine malnutrition. Continued emphasis on neonatal pain management research may help to decrease some of the adverse neurodevelopmental outcomes commonly found in our NICU graduates.
REFERENCES

85. Procianoy RS, Mendes EW, Silveira RC. Massage therapy improves neurodevelopment outcome at two years corrected age for very low birth weight infants. Early Hum Dev 2010;86:7–11.

